
Lesson 5: Common knowledge and
agreeing to disagree

5.1 Common knowledge: an example

Aumann, in '87, quali¯es correlated equilibria as expression of bayesian
rationality.
To understand and discuss the content of Aumann's assertion, we need some
further technical tools.
We need a richer language. I will begin with an example:
You are a DM

What you get depends on:

(
a 2 A Ã your action
! 2 − Ã true state of nature

Typical problem for decision under incertanty.
You must choose a before knowing !

Consider an example. You are o®ered to bet on the result of a throw of
couple of dice.
You will gain G if the sum of dice is 8, and you will pay L otherwise.
Here a reasonable (not the unique which is possible or reasonable) represen-
tation of − is − = f1; : : : ; 6g2.
With p(i; j) = 1

36 8(i; j) 2 −

Assume that you are simply an expected money maximizer. That is,
your vN-M utility function is (linear with) money.
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TO BET: 5
36G¡ 31

36L
NOT TO BET: 0

So, you will bet if 5
36G ¸ 31L. . .

Notice that your choice is NOT CONDITIONED upon !. Obviously. You
don't know !. We are obeying to some minimal realism assumption.
Would be di®erent if you knew !.
Of course, if ! 2 f(2; 6); (3; 5); : : : ; (6; 2)g then you would \bet", getting G.
Otherwise you would not bet, getting 0.
Not serious.

But, there are interesting \intermediate" cases.
For example, you could be allowed to see the result of die 1 just before bet-
ting.
This means that you have partial information.
Or that you have an information partition
P = ff(1; 2); : : : ; (1; 6)g; f(2; 1); : : : ; (2; 6)g; : : : ; f(6; 1); : : : ; (6; 6)gg = fP1; : : : ; P6g.
This (info partition) is a standard tool.
The interpretation is obvious. If ! is the true state of nature, the DM knows
only P (!), the element of the partition to which ! belongs.
So, the action of DM can be contingent on P (!).
Of course, to decide, the DM will re-compute the probability distribution
based on his partial information.

2 cases:
! = (1; j), i.e. we are in P1.
The probability that 8 obtains is zero, so:

TO BET: ¡L
NOT TO BET: 0.

! = (k; j) with k 6= 1; i.e. we are in Pk, k = 2; : : : ; 6. The probability
that 8 obtains is 1

6 . So:

TO BET: 1
6G¡ 5

6L
NOT TO BET: 0.

All of this with just one DM.

If the DM are two (or more)? Clearly, the key issue here is that they may
have di®erent (partial) information.
For example, DM2 could know the result of the \second" die.
So, he has a di®erent information partition.
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P2 = ff(1; 1); : : : ; (6; 1)g; f(1; 2); : : : ; (6; 2)g; : : : ; f(1; 6); : : : ; (6; 6)gg
For example, if the true ! is (1; 3), w.r.t. to the bet:
1 assignes prob = 0 to the event E that the sum of dice is 8.
2 assignes prob = 1

6 to the same event E.
So, if we have that 1

6G¡ 5
6L > 0;DM2 will bet, while 1 not.

Nothing strange. . .

Notice the following.
If 2 KNOWS that 1 assignes prob = 0 to the event E, than 2 will revise his
probability assessments! He understands that event E is actually impossi-
ble, analyzing the information received from the probability assessment of
I.
NOTICE that for this to happen, it is essential that player 2 KNOWS P1,
the info partition of 1 (or that, at least, has some info about that).
So, the fact that 1 and 2 have di®erent believes about E, cannot be a shared,
a common information.
This is the key point of Aumann's \agreeing to disagree".

Please, notice that this was just a simple example. In particular, it was
enough for player 2 to know the probability assigned by 1. One can construct
more sophisticated examples, with more elaborate knowledge interactions.
I will turn now to a very sketchy introduction to the formalism of CK, just to
have the minimal instruments for understanding both \agreeing to disagree"
and \correlated equilibria as expression of bayesian rationality".

5.2 Connections with subjective equilibria

The simple example that we have seen shows how two DMs may have di®er-
ent probability assessments about an event, just because they have di®erent
(partial) information.
Notice that this was exactly the assumption that we needed for the subjec-
tive equilibria.
At the same moment, the example points to a possible weakness: exchang-
ing information just on their probability assessments induces (possibly) a
revision. So, it seems to be di±cult to reconcile subjective equilibria with
the \core" assumptions we made: in particular, about the common knowl-
edge of the parameters of the game.
As we shall see, ther is really a problem, here.

5.3 Common knowledge

Common Knowledge
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I will follow chapter 5 of Osborne and Rubinstein.
We have − (¯nite, always, to simplify techniques) and P1;P2 two (informa-
tion) partitions of −.
Notice that a partition Pi (i = 1; 2) identi¯es an information function Pi, in
a obvious way:

Pi : −! 2−nf;g. (2− denotes the set of all subsets of −).

Pi(!) is just the set of Pi who contains !.
We shall say that an event F µ − is SELF EVIDENT between 1 and 2 if
FOR ALL ! 2 F we have that Pi(!) µ F; i = 1; 2.
An event E µ − is CK between 1 and 2 IN THE STATE ! 2 − if there is
a self-evident event F s.t.: ! 2 F µ E.
Notice that the following result holds.

Theorem Given −;P1;P2 and an event E, the following are equivalent:
1. - E is self-evident between 1 and 2.

2. - E is union of members of the partitions Pi; i = 1; 2
Proof 1) ) 2). Because 8! 2 E; Pi(!) µ E; for i = 1; 2 we have that
E = [!2EPi(!),for i = 1; 2.
Notice that Pi(!) is an element of the partition Pi, due to the way in which
we de¯ned Pi.
2)) 1) Since
E = [®2AP1;® with P1;® 2 P1 8® 2 A
E = [¯2BP2;¯ with P2;¯ 2 P2 8¯ 2 B.
Clearly, every ! 2 E will be in some P1;® (with P1;® µ E).
So, E is self-evident (between 1 and 2).

We shall come back to the connection between information partitions and
information functions in the next section. For more details, see once more
chapter 5 of Osborne and Rubinstein.

5.4 Agreeing to disagree

We have − (¯nite), and p, a probability distribution on − (to be inter-
preted later as the \common prior").
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We remind that a function P : − ! 2−nf;g is said to be an informa-
tion function. We shall assume that P satis¯es the following conditons:

! 2 P (!) 8! 2 −
if !0 2 P (!), then P (!) = P (!0)

It can be shown that P is \partitional" (i.e., there is a partition such that
for all ! 2 −, P (!) is just the element of the partition containing !) if and
only if P satis¯es the two conditions above.

Let P be an information function and let E be an event.
Given ! 2 −, at ! the DM will assign to E the probability

p(EjP (!))
(i.e. the probability of E, conditional on P (!)).
In our example, E was the event: sum of dice =8.
And, for example, at ! = (1; 3) we had p(EjP1(!)) = 0 p(EjP2(!)) = 1

6 .
Remark : the event that \DM i assigns the probability pi to E is:

f! 2 − : p(EjPi(!)) = pig.
Theorem: It is given − ¯nite and p probability on − (the common prior).
We are given two information functions P1 and P2.
Assume that it is CK between 1 and 2 in some state !? 2 − that 1 assigns
probability p1 to some event E and that 2 assigns probability p2 to E.
Then, p1 = p2
Proof : The event \1 assignes probability p1 to E and 2 assigns probability
p2 to E " is:

f! 2 − : p(EjP1(!)) = p1g \ f! 2 − : p(EjP2(!) = p2g
Since it is assumed to be CK, there is a self evident F s.t. :

!? 2 F µ f! 2 − : p(EjP1(!))| {z }
¤

= p1g \ f! 2 − : p(EjP2(!)) = p2g

Thanks to the theorem proved above, we have that F is a union of members
of the partition P1 and P2.
So, F = [®2AP1;® = [¯2BP2;¯.
Now, notice that p(EjP1;®) = p1. To be sure of that, it is enough to notice
that P1;® is one of the P1(!) that appear in ¤.

In more detail:
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Take ! 2 F .
Because ! 2 ¤, we have that p(EjP1(!)) = p1.
But ! 2 F , so P1(!) is one of the elements of the info partition whose union
gives F . That is, P1(!) = P1;® for some ® 2 A.

So, p(EjP1;®) = p1 for every ® 2 A.
Hence, p(EjU®2AP1;®) = p1.

(Namely, [p(EjP1;®0) = p1 and p(EjP1;®00) = p1 IMPLIES that p(EjP®0 [
P1;®00) = p1]).

So, p(EjF ) = p1.
But the same reasoning can be repeated for p2 ¢ ¢ ¢ So we get p(EjF ) = p2.
But p(EjF ) is a well de¯ned number . . .

5.5 Correlated equilibria as expression of Bayesian
rationality

Last remark on correlated equilibria.
The paper by Aumann in 1987 has an interesting title.
the assertion is that with correlated equilibria it should be possible to rec-
oncile two di®erent approaches:

² the GT approach, which tries to incorporate rationality and intelli-
gence of the players into a solution concept, from which are derived
the choices that should be made by a player.

² the subjectivistic approach, in which a player (as decision maker un-
der uncertainty) will choose an action which maximizes his expected
payo®. The expectation is based on the subjective probability assess-
ments of the decision maker over the elements which are not under his
control but that will in°uence the outcome. Notably, among them are
the action(s) chosen by the other player(s).

It is intuitively clear that the amount of subjectivity has to be somehow
constrained, if we want to get this \reconciliation" approach. We have seen
that diverging subjective assessments on uncertain events can provide re-
sults quite di®erent from the classical game theoretic predictions.
There should be some kind of \common ground".
This common ground is found in what has been named by Aumann as the
\Harsanyi doctrine". That is, players may have di®erent subjective proba-
bility distributions over uncertain events. But this di®erence should be as-
cribed only to di®erent information status. Players should share a common
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prior. From which di®erent posteriori can arise, due to di®erent exposure
to experience, that is to di®erent streams of information.
The result of Aumann is the following:

² if every player is bayesian rational at each state of the world, then the
distribution of the action pro¯le is a correlated equilibrium distribu-
tion.

To interpret the result, we need a set − of states of the world. Notice that
an element of − gives a very detailed description of the situation.
I will do this for the case of two players .
A state of the world is ! 2 −, where:

! = (PI(!); PII(!); aI(!); aII(!); ¹I(!); ¹II(!))

PI(!) is the set of states !
0 that I cannot distinguish from !, at ! (the

information partition of I. . . ).
aI(!) is the action chosen by I at !.
¹I(!) is the probability distribution (at !) on the actions available to II
(represents the believes of I w.r.t. the choices of II)
Now, if we assume that there is a \common prior" that is: a probability
distribution P on −, and that:

² the believes of players are derived by P taking into account their in-
formation partitions (via Bayes' rule).

² the actions of players are constant on their information partitions (a
quite reasonable assumption).

² at every ! players are rational (so, rationality is CK; rationality means
that aI(!) is a best reply to ¹I(!).)

Then, the probability distribution induced by ! ! (aI(!); aII(!)) is a cor-
related equilibrium.
See Osborne and Rubinstein, cap 5, for all of the details
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